A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces

begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...

متن کامل

an iterative method for amenable semigroup and infinite family of non expansive mappings in hilbert spaces

begin{abstract} in this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of hilbert spaces. we prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. the results present...

متن کامل

Nonlinear Ergodic Theorems for Asymptotically Almost Nonexpansive Curves in a Hilbert Space

We introduce the notion of asymptotically almost nonexpansive curves which include almost-orbits of commutative semigroups of asymptotically nonexpansive type mappings and study the asymptotic behavior and prove nonlinear ergodic theorems for such curves. As applications of our main theorems, we obtain the results on the asymptotic behavior and ergodicity for a commutative semigroup of non-Lips...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1981

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1981-0593468-x